适配器模式
原型模式
建造者模式
抽象工厂模式
工厂方法模式
单例模式
面向对象的设计原则
面向对象的设计原则
写代码也是有原则的,我们之所以使用设计模式,主要是为了适应变化,提高代码复用率,使软件更具有可维护性和可扩展性。如果我们能更好的理解这些设计原则,对我们理解面向对象的设计模式也是有帮助的,因为这些模式的产生是基于这些原则的。这些规则是:单一职责原则(SRP)、开放封闭原则(OCP)、里氏代替原则(LSP)、依赖倒置原则(DIP)、接口隔离原则(ISP)、合成复用原则(CRP)和迪米特原则(LoD)。下面我们就分别介绍这几种设计原则。
单一职责原则(SRP):
- SRP(Single Responsibilities Principle)的定义:就一个类而言,应该仅有一个引起它变化的原因。简而言之,就是功能要单一。
- 如果一个类承担的职责过多,就等于把这些职责耦合在一起,一个职责的变化可能会削弱或者抑制这个类完成其它职责的能力。这种耦合会导致脆弱的设计,当变化发生时,设计会遭受到意想不到的破坏。(敏捷软件开发)
- 软件设计真正要做的许多内容,就是发现职责并把那些职责相互分离。
小结:单一职责原则(SRP)可以看做是低耦合、高内聚在面向对象原则上的引申,将职责定义为引起变化的原因,以提高内聚性来减少引起变化的原因。责任过多,引起它变化的原因就越多,这样就会导致职责依赖,大大损伤其内聚性和耦合度。
开放关闭原则(OCP)
- OCP(Open-Close Principle)的定义:就是说软件实体(类,方法等等)应该可以扩展(扩展可以理解为增加),但是不能在原来的方法或者类上修改,也可以这样说,对增加代码开放,对修改代码关闭。
- OCP的两个特征: 对于扩展(增加)是开放的,因为它不影响原来的,这是新增加的。对于修改是封闭的,如果总是修改,逻辑会越来越复杂。
小结:开放封闭原则(OCP)是面向对象设计的核心思想。遵循这个原则可以为我们面向对象的设计带来巨大的好处:可维护(维护成本小,做管理简单,影响最小)、可扩展(有新需求,增加就好)、可复用(不耦合,可以使用以前代码)、灵活性好(维护方便、简单)。开发人员应该仅对程序中出现频繁变化的那些部分做出抽象,但是不能过激,对应用程序中的每个部分都刻意地进行抽象同样也不是一个好主意。拒绝不成熟的抽象和抽象本身一样重要。
里氏代替原则(LSP)
- LSP(Liskov Substitution Principle)的定义:子类型必须能够替换掉它们的父类型。更直白的说,LSP是实现面向接口编程的基础。
小结:任何基类可以出现的地方,子类一定可以出现,所以我们可以实现面向接口编程。 LSP是继承复用的基石,只有当子类可以替换掉基类,软件的功能不受到影响时,基类才能真正被复用,而子类也能够在基类的基础上增加新的行为。里氏代换原则是对“开-闭”原则的补充。实现“开-闭”原则的关键步骤就是抽象化。而基类与子类的继承关系就是抽象化的具体实现,所以里氏代换原则是对实现抽象化的具体步骤的规范。
依赖倒置原则(DIP)
- DIP(Dependence Inversion Principle)的定义:抽象不应该依赖细节,细节应该依赖于抽象。简单说就是,我们要针对接口编程,而不要针对实现编程。
- 高层模块不应该依赖低层模块,两个都应该依赖抽象,因为抽象是稳定的。抽象不应该依赖具体(细节),具体(细节)应该依赖抽象。
小结:依赖倒置原则其实可以说是面向对象设计的标志,如果在我们编码的时候考虑的是面向接口编程,而不是简单的功能实现,体现了抽象的稳定性,只有这样才符合面向对象的设计。
接口隔离原则(ISP)
- 接口隔离原则(Interface Segregation Principle, ISP)指的是使用多个专门的接口比使用单一的总接口要好。也就是说不要让一个单一的接口承担过多的职责,而应把每个职责分离到多个专门的接口中,进行接口分离。过于臃肿的接口是对接口的一种污染。
- 使用多个专门的接口比使用单一的总接口要好。
- 一个类对另外一个类的依赖性应当是建立在最小的接口上的。
- 一个接口代表一个角色,不应当将不同的角色都交给一个接口。没有关系的接口合并在一起,形成一个臃肿的大接口,这是对角色和接口的污染。
- “不应该强迫客户依赖于它们不用的方法。接口属于客户,不属于它所在的类层次结构。”这个说得很明白了,再通俗点说,不要强迫客户使用它们不用的方法,如果强迫用户使用它们不使用的方法,那么这些客户就会面临由于这些不使用的方法的改变所带来的改变。
小结:接口隔离原则(ISP)告诉我们,在做接口设计的时候,要尽量设计的接口功能单一,功能单一,使它变化的因素就少,这样就更稳定,其实这体现了高内聚,低耦合的原则,这样做也避免接口的污染。
组合复用原则(CRP)
- 组合复用原则(Composite Reuse Principle, CRP)就是在一个新的对象里面使用一些已有的对象,使之成为新对象的一部分。新对象通过向这些对象的委派达到复用已用功能的目的。简单地说,就是要尽量使用合成/聚合,尽量不要使用继承。
- 要使用好组合复用原则,首先需要区分”Has—A”和“Is—A”的关系。 “Is—A”是指一个类是另一个类的“一种”,是属于的关系,而“Has—A”则不同,它表示某一个角色具有某一项责任。导致错误的使用继承而不是聚合的常见的原因是错误地把“Has—A”当成“Is—A”.例如:鸡是动物,这就是“Is-A”的表现,某人有一个手枪,People类型里面包含一个Gun类型,这就是“Has-A”的表现。
小结:组合/聚合复用原则可以使系统更加灵活,类与类之间的耦合度降低,一个类的变化对其他类造成的影响相对较少,因此一般首选使用组合/聚合来实现复用;其次才考虑继承,在使用继承时,需要严格遵循里氏替换原则,有效使用继承会有助于对问题的理解,降低复杂度,而滥用继承反而会增加系统构建和维护的难度以及系统的复杂度,因此需要慎重使用继承复用。
迪米特法则(Law of Demeter)
- 迪米特法则(Law of Demeter,LoD)又叫最少知识原则(Least Knowledge Principle,LKP),指的是一个对象应当对其他对象有尽可能少的了解。也就是说,一个模块或对象应尽量少的与其他实体之间发生相互作用,使得系统功能模块相对独立,这样当一个模块修改时,影响的模块就会越少,扩展起来更加容易。
- 关于迪米特法则其他的一些表述有:只与你直接的朋友们通信;不要跟“陌生人”说话。
- 外观模式(Facade Pattern)和中介者模式(Mediator Pattern)就使用了迪米特法则。
小结:迪米特法则的初衷是降低类之间的耦合,实现类型之间的高内聚,低耦合,这样可以解耦。但是凡事都有度,过分的使用迪米特原则,会产生大量这样的中介和传递类,导致系统复杂度变大。所以在采用迪米特法则时要反复权衡,既做到结构清晰,又要高内聚低耦合。
DotNetty完全教程(七)
DotNetty完全教程(七)
Excerpt
ChannelPipeline和ChannelHandleContext介绍ChannelPipeline是一系列ChannelHandler连接的实例链,这个实例链构成了应用程序逻辑处理的核心。下图反映了这种关联:ChannelHandlerContext提供了一个ChannelPipeline的上下文,用于ChannelHandler在Pipeline中的交互,这种交互十分的灵活,不仅…
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
ChannelPipeline和ChannelHandleContext
介绍
ChannelPipeline是一系列ChannelHandler连接的实例链,这个实例链构成了应用程序逻辑处理的核心。下图反映了这种关联:
ChannelHandlerContext提供了一个ChannelPipeline的上下文,用于ChannelHandler在Pipeline中的交互,这种交互十分的灵活,不仅是信息可以交互,甚至可以改变其他Handler在Pipeline中的位置。
特性
- 每一个Channel都会被分配到一个ChannelPipeline,这种关联是永久性的。在Netty中是关联,在DotNetty中这种关联被进一步的强绑定,变成了一个Channel中存在一个Pipeline。
- 对于Pipeline来说,入站口被当作Pipeline的头部,出站口被当作尾部。虽然我们看到有两条线,但是在Pipeline中其实是线性的,在事件传播的时候,如果Pipeline发现这个事件的属性(入站出站)跟下一个Handler不匹配,就会跳过这个Handler,前进到下一个。
- 一个Handler可以既作为入站处理器也作为出站处理器。
- 修改Pipeline
- 为了保证ChannelHandler处理事件的高效性,在Handler中不能有阻塞代码,但是如果遇到了一些阻塞API,就需要用到DefaultEventExecutorGroup,其功能是把这个事件的处理从原先的EventLoop中移除,送到一个专门的执行事件处理器中进行处理,从而不阻塞Pipeline。
ChanelPipeline的事件
我们可以看到fire方法都是调用下一个Handler中的方法,我们可以在合适的时机调用下一个Handler中的方法以实现数据的流动。
这里我们注意一下,Write方法并不会将消息写入Socket中,而是写入消息队列中,等待Flush将数据冲刷下去。
Context的API支持
Pipeline和Context
我们可以发现,Pipeline上也有fire–的方法,Context也有类似的方法,他们的差别在于,Pipeline或者Channel上的这些方法引发的事件流将从Pipeline的头部开始移动,而Context上的方法会让事件从当前Handler开始移动,所以为了更短的事件流,我们应该尽可能的使用Context的方法。
使用ChannelHandlerContext
获取当前Channel
1
2IChannelHandlerContext ctx = ...;
IChannel channel = ctx.Channel获取当前pipeline
1
2
3
4
5
6
7// 注意一下在Netty中可以直接通过context获取pipeline,在DotNetty中需要从Channel中获取
// Netty
IChannelHandlerContext ctx = ...;
IChannel channel = ctx.pipeline
// DotNetty
IChannel channel = ctx.Channel;
IChannelPipeline pipeline = channel.Pipeline;写入pipeline让事件从尾端开始移动
1
2
3
4IChannel channel = ctx.Channel;
IChannelPipeline pipeline = channel.Pipeline;
channel.WriteAndFlushAsync("Hello World!");
pipeline.WriteAndFlushAsync("Hello World!");
注意,Write是出站事件,他的流动方向是从末尾到头部,这个一定要注意。在pipeline或者channel中写入事件,都是从最末尾开始流动,在Context中写入是从当前Handler中开始移动,这个我们已经在很多地方都说明了这样的不同。
应用
- 协议切换
因为我们可以通过Context获取Pipeline的引用,获取了pipeline之后又可以动态的加载和删除Handler,利用这个特性我们可以实现协议的切换, - 随时随地使用Context
这里我们补充一个知识,Context和Handler的关系是一对一的,而不是一个Context对应多个Handler,这就让我们可以缓存下Context的引用,在任何时候进行使用,这里的任何时候可以是不同的线程。举个例子就是我们之前写的回声程序是在收到信息之后发送,但是复杂一点我们需要在按下按钮的时候发送一条数据,这时候我们可以在连接之后缓存Context的引用,在按下按钮的时候使用Ctx.Write();方法来发送一条数据。
线程安全
在Netty中,如果想要将一个Handler用于多个Pipeline中,需要标注Shared,同时需要保证线程安全,因为这里可能有多线程的重入问题。
异常处理
- 入站异常无论在何时引发,都会顺着Pipeline继续向下流动,如果最后的Handler没有处理,则会被标记为未处理。所以为了处理所有的入站异常,我们可以在pipeline的尾端通过复写ExceptionCaught来处理所有pipeline上的异常。
- 在出站Handler中获取异常在Netty中需要使用ChannelFuture以及ChannelPromise这里先不做叙述
DotNetty完全教程(一)
DotNetty完全教程(一)
Excerpt
写本系列文章的目的我一直以来都在从事.NET相关的工作,做过工控,做过网站,工作初期维护过别人写的网络库,后来自己写网络库,我发现在使用C#编程的程序员中,能否写出高性能的网络库一直都是考验一个程序员能力的标杆。为了写出高性能的网络库,我查阅了很多资料,发现Java的Netty有着得天独厚的设计以及实现优势,Java也因为Netty的存在,在开发大吞吐量的应用程序中得心应手。我想,.NET程序…
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
写本系列文章的目的
我一直以来都在从事.NET相关的工作,做过工控,做过网站,工作初期维护过别人写的网络库,后来自己写网络库,我发现在使用C#编程的程序员中,能否写出高性能的网络库一直都是考验一个程序员能力的标杆。为了写出高性能的网络库,我查阅了很多资料,发现Java的Netty有着得天独厚的设计以及实现优势,Java也因为Netty的存在,在开发大吞吐量的应用程序中得心应手。
我想,.NET程序员为什么不能使用这么好的应用程序框架。好在,Azure团队写出了DotNetty,使得.NET程序员也可以迅速的,便捷的搭建一个高性能的网络应用程序,但是,DotNetty并没有多少资料,项目代码中也没有多少注释,这对我们的学习以及使用带来了极大的障碍。
我通过对于Netty的研究,一步步的使用DotNetty来创建应用程序,分析DotNetty实现了哪些,没有实现哪些,实现的有何不同,希望通过最简单的描述,让读者能够了解DotNetty,无论是在工作学习中快速搭建网络应用程序还是通过分析Netty的思想,为自己写的网络库添砖加瓦都是十分有意义的。
本系列文章参考了《Netty实战》,感兴趣的同学可以去看看这本书。
Netty是什么
Netty 是一款用于创建高性能网络应用程序的高级框架。
Netty 是一款异步的事件驱动的网络应用程序框架,支持快速地开发可维护的高性能的面向协议的服务器
和客户端
DotNetty是什么
DotNetty是微软的Azure团队仿造Netty编写的网络应用程序框架。
优点
- 关注点分离——业务和网络逻辑解耦;
- 模块化和可复用性;
- 可测试性作为首要的要求
历史
- 阻塞Socket通信特点:
- 建立连接要阻塞线程,读取数据要阻塞线程
- 如果要管理多个客户端,就需要为每个客户端建立不同的线程
- 会有大量的线程在休眠状态,等待接收数据,资源浪费
- 每个线程都要占用系统资源
- 线程的切换很耗费系统资源
- 非阻塞Socket(NIO)特点:
- 如图,每个Socket如果需要读写操作,都通过事件通知的方式通知选择器,这样就实现了一个线程管理多个Socket的目的。
- 选择器甚至可以在所有的Socket空闲的时候允许线程先去干别的事情
- 减少了线程数量导致的资源占用,减少了线程切换导致的资源消耗
- Netty特点
Netty设计的关键点
异步和事件驱动是Netty设计的关键
核心组件
- Channel:一个连接就是一个Channel
- 回调:通知的基础
1 | public class ConnectHandler : SimpleChannelInboundHandler<string> |
Future:通知的另一种方式,可以认为ChannelFuture是包装了一系列Channel事件的对象。回调和Future相互补充,相互结合同时也可以理解Future是一种更加精细的回调。
但是ChannelFuture在DotNetty中被Task取代
事件和ChannelHandler
ChannelHandler是事件处理器,负责处理入站事件和出站事件。通常每一个事件都由一系列的Handler处理。
本文参考资料以及截图来自《Netty实战》