1 | sudo vim /etc/sysctl.d/99-sysctl.conf: #重启后生效 |
1 | sudo vim /etc/security/limits.conf: |
1 | sudo vim /etc/sysctl.d/99-sysctl.conf: #重启后生效 |
1 | sudo vim /etc/security/limits.conf: |
1 | helm repo add traefik https://helm.traefik.io/traefik |
traefik-values.yaml
1 | # Default values for Traefik |
1 | helm upgrade traefik traefik/traefik \ |
mysql-traefik-ingress.yaml
1 | apiVersion: apps/v1 |
Excerpt
在软件设计相关领域,“堆(Heap)”的概念主要涉及到两个方面:一种是数据结构,逻辑上是一颗完全二叉树,存储上是一个数组对象(二叉堆)。另一种是垃圾收集存储区,是软件系统可以编程的内存区域。本文所说的堆指的是前者,另外,这篇文章中堆中元素的值均以整形为例堆排序的时间复杂度是O(nlog2n),与快速
在软件设计相关领域,“堆(Heap)”的概念主要涉及到两个方面:
一种是数据结构,逻辑上是一颗完全二叉树,存储上是一个数组对象(二叉堆)。
另一种是垃圾收集存储区,是软件系统可以编程的内存区域。
本文所说的堆指的是前者,另外,这篇文章中堆中元素的值均以整形为例
堆排序的时间复杂度是O(nlog2n),与快速排序达到相同的时间复杂度. 但是在实际应用中,我们往往采用快速排序而不是堆排序. 这是因为快速排序的一个好的实现,往往比堆排序具有更好的表现. 堆排序的主要用途,是在形成和处理优先级队列方面. 另外, 如果计算要求是类优先级队列(比如, 只要返回最大或者最小元素, 只有有限的插入要求等), 堆同样是很适合的数据结构.
**堆排序
**堆排序是一种选择排序。是不稳定的排序方法。时间复杂度为O(nlog2n)。
堆排序的特点是:在排序过程中,将排序数组看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲节点和孩子节点之间的内在关系,在当前无序区中选择关键字最大(或最小)的记录。
基本思想
1.将要排序的数组创建为一个大根堆。大根堆的堆顶元素就是这个堆中最大的元素。
2.将大根堆的堆顶元素和无序区最后一个元素交换,并将无序区最后一个位置例入有序区,然后将新的无序区调整为大根堆。
重复操作,无序区在递减,有序区在递增。
初始时,整个数组为无序区,第一次交换后无序区减一,有序区增一。
每一次交换,都是大根堆的堆顶元素插入有序区,所以有序区保持是有序的。
大根堆和小根堆
堆:是一颗完全二叉树。
大根堆:所有节点的子节点比其自身小的堆
小根堆:所有节点的子节点比其自身大的堆
堆与数组的关系
堆是一种逻辑结构(形象的表示数据的存储格式),数组则是数据的实际存储结构(对应数据的存储地址),堆中的根节点与左右子节点在存储数组中的位置关系如下:假设根节点在数组中的位置(数组下标)为 i ,那么左节点在数组中的位置(数组下标)为 i * 2 + 1 , 右节点在数组中的位置(数组下标)为 i * 2 + 2 。
以上是基本的知识点,具体代码如下所示:
1 | <span> //</span><span>堆排序算法(传递待排数组名,即:数组的地址。故形参数组的各种操作反应到实参数组上)</span><span><br></span><span> private </span><span>static </span><span>void</span><span> HeapSortFunction(</span><span>int</span><span>[] array)<br> {<br> </span><span>try</span><span><br> {<br> BuildMaxHeap(array); </span><span>//</span><span>创建大顶推(初始状态看做:整体无序)</span><span><br></span><span> for</span><span> (</span><span>int</span><span> i </span><span>=</span><span> array.Length </span><span>-</span><span>1</span><span>; i </span><span>></span><span>0</span><span>; i</span><span>--</span><span>)<br> {<br> Swap(</span><span>ref</span><span> array[</span><span>0</span><span>], </span><span>ref</span><span> array[i]); </span><span>//</span><span>将堆顶元素依次与无序区的最后一位交换(使堆顶元素进入有序区)</span><span><br></span><span> MaxHeapify(array, </span><span>0</span><span>, i); </span><span>//</span><span>重新将无序区调整为大顶堆</span><span><br></span><span> }<br> }<br> </span><span>catch</span><span> (Exception ex)<br> { }<br> }<br><br> </span><span>///</span><span><summary></span><span><br> </span><span>///</span><span> 创建大顶推(根节点大于左右子节点)<br> </span><span>///</span><span></summary></span><span><br> </span><span>///</span><span><param name="array"></span><span>待排数组</span><span></param></span><span><br></span><span> private </span><span>static </span><span>void</span><span> BuildMaxHeap(</span><span>int</span><span>[] array)<br> {<br> </span><span>try</span><span><br> {<br> </span><span>//</span><span>根据大顶堆的性质可知:数组的前半段的元素为根节点,其余元素都为叶节点</span><span><br></span><span> for</span><span> (</span><span>int</span><span> i </span><span>=</span><span> array.Length </span><span>/</span><span>2</span><span>-</span><span>1</span><span>; i </span><span>>=</span><span>0</span><span>; i</span><span>--</span><span>) </span><span>//</span><span>从最底层的最后一个根节点开始进行大顶推的调整</span><span><br></span><span> {<br> MaxHeapify(array, i, array.Length); </span><span>//</span><span>调整大顶堆</span><span><br></span><span> }<br> }<br> </span><span>catch</span><span> (Exception ex)<br> { }<br> }<br><br> </span><span>///</span><span><summary></span><span><br> </span><span>///</span><span> 大顶推的调整过程<br> </span><span>///</span><span></summary></span><span><br> </span><span>///</span><span><param name="array"></span><span>待调整的数组</span><span></param></span><span><br> </span><span>///</span><span><param name="currentIndex"></span><span>待调整元素在数组中的位置(即:根节点)</span><span></param></span><span><br> </span><span>///</span><span><param name="heapSize"></span><span>堆中所有元素的个数</span><span></param></span><span><br></span><span> private </span><span>static </span><span>void</span><span> MaxHeapify(</span><span>int</span><span>[] array, </span><span>int</span><span> currentIndex, </span><span>int</span><span> heapSize)<br> {<br> </span><span>try</span><span><br> {<br> </span><span>int</span><span> left </span><span>=</span><span>2</span><span>*</span><span> currentIndex </span><span>+</span><span>1</span><span>; </span><span>//</span><span>左子节点在数组中的位置</span><span><br></span><span> int</span><span> right </span><span>=</span><span>2</span><span>*</span><span> currentIndex </span><span>+</span><span>2</span><span>; </span><span>//</span><span>右子节点在数组中的位置</span><span><br></span><span> int</span><span> large </span><span>=</span><span> currentIndex; </span><span>//</span><span>记录此根节点、左子节点、右子节点 三者中最大值的位置</span><span><br></span><span><br> </span><span>if</span><span> (left </span><span><</span><span> heapSize </span><span>&&</span><span> array[left] </span><span>></span><span> array[large]) </span><span>//</span><span>与左子节点进行比较</span><span><br></span><span> {<br> large </span><span>=</span><span> left;<br> }<br> </span><span>if</span><span> (right </span><span><</span><span> heapSize </span><span>&&</span><span> array[right] </span><span>></span><span> array[large]) </span><span>//</span><span>与右子节点进行比较</span><span><br></span><span> {<br> large </span><span>=</span><span> right;<br> }<br> </span><span>if</span><span> (currentIndex </span><span>!=</span><span> large) </span><span>//</span><span>如果 currentIndex != large 则表明 large 发生变化(即:左右子节点中有大于根节点的情况)</span><span><br></span><span> {<br> Swap(</span><span>ref</span><span> array[currentIndex], </span><span>ref</span><span> array[large]); </span><span>//</span><span>将左右节点中的大者与根节点进行交换(即:实现局部大顶堆)</span><span><br></span><span> MaxHeapify(array, large, heapSize); </span><span>//</span><span>以上次调整动作的large位置(为此次调整的根节点位置),进行递归调整</span><span><br></span><span> }<br> }<br> </span><span>catch</span><span> (Exception ex)<br> { }<br> }<br><br> </span><span>///</span><span><summary></span><span><br> </span><span>///</span><span> 交换函数<br> </span><span>///</span><span></summary></span><span><br> </span><span>///</span><span><param name="a"></span><span>元素a</span><span></param></span><span><br> </span><span>///</span><span><param name="b"></span><span>元素b</span><span></param></span><span><br></span><span> private </span><span>static </span><span>void</span><span> Swap(</span><span>ref</span><span>int</span><span> a, </span><span>ref</span><span>int</span><span> b)<br> {<br> </span><span>int</span><span> temp </span><span>=</span><span>0</span><span>;<br> temp </span><span>=</span><span> a;<br> a </span><span>=</span><span> b;<br> b </span><span>=</span><span> temp;<br> }</span> |
Excerpt
文章浏览阅读8.2k次,点赞46次,收藏119次。本文详细介绍了如何在COCO数据集上使用YOLOv8目标检测模型进行推理,涉及环境配置、代码实现(包括图像、视频和摄像头检测),以及展示ONNX模型在不同大小版本(YOLOv8n,YOLOv8s,YOLOv8m,YOLOv8l,YOLOv8x)上的实验结果。
在本博客中,我们将探讨如何使用YOLOv8目标检测模型进行推理,包括图片,视频文件,摄像头实时检测,特别是ONNX在不同大小(YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x)的模型上进行的实验。我们还将讨论所需的环境配置,代码实现,以及如何展示推理结果。
在详细描述环境配置和安装步骤之前,请确保您的系统已经安装了Python和pip。下面是详细的环境配置步骤,适用于基于YOLOv8模型进行目标检测的项目。
1 | pip install onnxruntime-gpu==1.13.1 opencv-python==4.7.0.68 numpy==1.24.1 Pillow==9.4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/ |
如果您没有GPU或者不打算使用GPU,可以安装onnxruntime
而不是onnxruntime-gpu
:
1 | pip install onnxruntime==1.13.1 opencv-python==4.7.0.68 numpy==1.24.1 Pillow==9.4.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/ |
安装完成后,您可以通过运行Python并尝试导入安装的包来验证是否成功安装了所有必要的库:
1 | import onnxruntime import cv2 import numpy import PIL |
如果上述命令没有引发任何错误,那么恭喜您,您已成功配置了运行环境。
pip install --upgrade pip
。onnxruntime-gpu
要求系统预装这些NVIDIA库以利用GPU加速。按照这些步骤,您应该能够成功配置环境并运行基于YOLOv8的目标检测项目了。
YOLOv8模型的权重可以通过以下百度网盘链接下载:
请确保下载适合您需求的模型版本。
以下是进行目标检测的整体代码流程,包括模型加载、图像预处理、推理执行、后处理及结果展示的步骤。
1 | import cv2 import onnxruntime as ort from PIL import Image import numpy as np # 置信度 confidence_thres = 0.35 # iou阈值 iou_thres = 0.5 # 类别 classes = {0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'} # 随机颜色 color_palette = np.random.uniform(100, 255, size=(len(classes), 3)) # 判断是使用GPU或CPU providers = [ ('CUDAExecutionProvider', { 'device_id': 0, # 可以选择GPU设备ID,如果你有多个GPU }), 'CPUExecutionProvider', # 也可以设置CPU作为备选 ] def calculate_iou(box, other_boxes): """ 计算给定边界框与一组其他边界框之间的交并比(IoU)。 参数: - box: 单个边界框,格式为 [x1, y1, width, height]。 - other_boxes: 其他边界框的数组,每个边界框的格式也为 [x1, y1, width, height]。 返回值: - iou: 一个数组,包含给定边界框与每个其他边界框的IoU值。 """ # 计算交集的左上角坐标 x1 = np.maximum(box[0], np.array(other_boxes)[:, 0]) y1 = np.maximum(box[1], np.array(other_boxes)[:, 1]) # 计算交集的右下角坐标 x2 = np.minimum(box[0] + box[2], np.array(other_boxes)[:, 0] + np.array(other_boxes)[:, 2]) y2 = np.minimum(box[1] + box[3], np.array(other_boxes)[:, 1] + np.array(other_boxes)[:, 3]) # 计算交集区域的面积 intersection_area = np.maximum(0, x2 - x1) * np.maximum(0, y2 - y1) # 计算给定边界框的面积 box_area = box[2] * box[3] # 计算其他边界框的面积 other_boxes_area = np.array(other_boxes)[:, 2] * np.array(other_boxes)[:, 3] # 计算IoU值 iou = intersection_area / (box_area + other_boxes_area - intersection_area) return iou def custom_NMSBoxes(boxes, scores, confidence_threshold, iou_threshold): # 如果没有边界框,则直接返回空列表 if len(boxes) == 0: return [] # 将得分和边界框转换为NumPy数组 scores = np.array(scores) boxes = np.array(boxes) # 根据置信度阈值过滤边界框 mask = scores > confidence_threshold filtered_boxes = boxes[mask] filtered_scores = scores[mask] # 如果过滤后没有边界框,则返回空列表 if len(filtered_boxes) == 0: return [] # 根据置信度得分对边界框进行排序 sorted_indices = np.argsort(filtered_scores)[::-1] # 初始化一个空列表来存储选择的边界框索引 indices = [] # 当还有未处理的边界框时,循环继续 while len(sorted_indices) > 0: # 选择得分最高的边界框索引 current_index = sorted_indices[0] indices.append(current_index) # 如果只剩一个边界框,则结束循环 if len(sorted_indices) == 1: break # 获取当前边界框和其他边界框 current_box = filtered_boxes[current_index] other_boxes = filtered_boxes[sorted_indices[1:]] # 计算当前边界框与其他边界框的IoU iou = calculate_iou(current_box, other_boxes) # 找到IoU低于阈值的边界框,即与当前边界框不重叠的边界框 non_overlapping_indices = np.where(iou <= iou_threshold)[0] # 更新sorted_indices以仅包含不重叠的边界框 sorted_indices = sorted_indices[non_overlapping_indices + 1] # 返回选择的边界框索引 return indices def draw_detections(img, box, score, class_id): """ 在输入图像上绘制检测到的对象的边界框和标签。 参数: img: 要在其上绘制检测结果的输入图像。 box: 检测到的边界框。 score: 对应的检测得分。 class_id: 检测到的对象的类别ID。 返回: 无 """ # 提取边界框的坐标 x1, y1, w, h = box # 根据类别ID检索颜色 color = color_palette[class_id] # 在图像上绘制边界框 cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) # 创建标签文本,包括类名和得分 label = f'{classes[class_id]}: {score:.2f}' # 计算标签文本的尺寸 (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) # 计算标签文本的位置 label_x = x1 label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 # 绘制填充的矩形作为标签文本的背景 cv2.rectangle(img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color, cv2.FILLED) # 在图像上绘制标签文本 cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) def preprocess(img, input_width, input_height): """ 在执行推理之前预处理输入图像。 返回: image_data: 为推理准备好的预处理后的图像数据。 """ # 获取输入图像的高度和宽度 img_height, img_width = img.shape[:2] # 将图像颜色空间从BGR转换为RGB img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 将图像大小调整为匹配输入形状 img = cv2.resize(img, (input_width, input_height)) # 通过除以255.0来归一化图像数据 image_data = np.array(img) / 255.0 # 转置图像,使通道维度为第一维 image_data = np.transpose(image_data, (2, 0, 1)) # 通道首 # 扩展图像数据的维度以匹配预期的输入形状 image_data = np.expand_dims(image_data, axis=0).astype(np.float32) # 返回预处理后的图像数据 return image_data, img_height, img_width def postprocess(input_image, output, input_width, input_height, img_width, img_height): """ 对模型输出进行后处理,提取边界框、得分和类别ID。 参数: input_image (numpy.ndarray): 输入图像。 output (numpy.ndarray): 模型的输出。 input_width (int): 模型输入宽度。 input_height (int): 模型输入高度。 img_width (int): 原始图像宽度。 img_height (int): 原始图像高度。 返回: numpy.ndarray: 绘制了检测结果的输入图像。 """ # 转置和压缩输出以匹配预期的形状 outputs = np.transpose(np.squeeze(output[0])) # 获取输出数组的行数 rows = outputs.shape[0] # 用于存储检测的边界框、得分和类别ID的列表 boxes = [] scores = [] class_ids = [] # 计算边界框坐标的缩放因子 x_factor = img_width / input_width y_factor = img_height / input_height # 遍历输出数组的每一行 for i in range(rows): # 从当前行提取类别得分 classes_scores = outputs[i][4:] # 找到类别得分中的最大得分 max_score = np.amax(classes_scores) # 如果最大得分高于置信度阈值 if max_score >= confidence_thres: # 获取得分最高的类别ID class_id = np.argmax(classes_scores) # 从当前行提取边界框坐标 x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3] # 计算边界框的缩放坐标 left = int((x - w / 2) * x_factor) top = int((y - h / 2) * y_factor) width = int(w * x_factor) height = int(h * y_factor) # 将类别ID、得分和框坐标添加到各自的列表中 class_ids.append(class_id) scores.append(max_score) boxes.append([left, top, width, height]) # 应用非最大抑制过滤重叠的边界框 indices = custom_NMSBoxes(boxes, scores, confidence_thres, iou_thres) # 遍历非最大抑制后的选定索引 for i in indices: # 根据索引获取框、得分和类别ID box = boxes[i] score = scores[i] class_id = class_ids[i] # 在输入图像上绘制检测结果 draw_detections(input_image, box, score, class_id) # 返回修改后的输入图像 return input_image def init_detect_model(model_path): # 使用ONNX模型文件创建一个推理会话,并指定执行提供者 session = ort.InferenceSession(model_path, providers=providers) # 获取模型的输入信息 model_inputs = session.get_inputs() # 获取输入的形状,用于后续使用 input_shape = model_inputs[0].shape # 从输入形状中提取输入宽度 input_width = input_shape[2] # 从输入形状中提取输入高度 input_height = input_shape[3] # 返回会话、模型输入信息、输入宽度和输入高度 return session, model_inputs, input_width, input_height def detect_object(image, session, model_inputs, input_width, input_height): # 如果输入的图像是PIL图像对象,将其转换为NumPy数组 if isinstance(image, Image.Image): result_image = np.array(image) else: # 否则,直接使用输入的图像(假定已经是NumPy数组) result_image = image # 预处理图像数据,调整图像大小并可能进行归一化等操作 img_data, img_height, img_width = preprocess(result_image, input_width, input_height) # 使用预处理后的图像数据进行推理 outputs = session.run(None, {model_inputs[0].name: img_data}) # 对推理结果进行后处理,例如解码检测框,过滤低置信度的检测等 output_image = postprocess(result_image, outputs, input_width, input_height, img_width, img_height) # 返回处理后的图像 return output_image if __name__ == '__main__': # 模型文件的路径 model_path = "yolov8n.onnx" # 初始化检测模型,加载模型并获取模型输入节点信息和输入图像的宽度、高度 session, model_inputs, input_width, input_height = init_detect_model(model_path) # 三种模式 1为图片预测,并显示结果图片;2为摄像头检测,并实时显示FPS; 3为视频检测,并保存结果视频 mode = 1 if mode == 1: # 读取图像文件 image_data = cv2.imread("street.jpg") # 使用检测模型对读入的图像进行对象检测 result_image = detect_object(image_data, session, model_inputs, input_width, input_height) # 将检测后的图像保存到文件 cv2.imwrite("output_image.jpg", result_image) # 在窗口中显示检测后的图像 cv2.imshow('Output', result_image) # 等待用户按键,然后关闭显示窗口 cv2.waitKey(0) elif mode == 2: # 打开摄像头 cap = cv2.VideoCapture() # 0表示默认摄像头,如果有多个摄像头可以尝试使用1、2等 # 检查摄像头是否成功打开 if not cap.isOpened(): print("Error: Could not open camera.") exit() # 初始化帧数计数器和起始时间 frame_count = 0 start_time = time.time() # 循环读取摄像头视频流 while True: # 读取一帧 ret, frame = cap.read() # 检查帧是否成功读取 if not ret: print("Error: Could not read frame.") break # 使用检测模型对读入的帧进行对象检测 output_image = detect_object(frame, session, model_inputs, input_width, input_height) # 计算帧速率 frame_count += 1 end_time = time.time() elapsed_time = end_time - start_time fps = frame_count / elapsed_time print(f"FPS: {fps:.2f}") # 将FPS绘制在图像上 cv2.putText(output_image, f"FPS: {fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA) # 在窗口中显示当前帧 cv2.imshow("Video", output_image) # 按下 'q' 键退出循环 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头资源 cap.release() # 关闭窗口 cv2.destroyAllWindows() elif mode == 3: # 输入视频路径 input_video_path = 'kun.mp4' # 输出视频路径 output_video_path = 'kun_det.mp4' # 打开视频文件 cap = cv2.VideoCapture(input_video_path) # 检查视频是否成功打开 if not cap.isOpened(): print("Error: Could not open video.") exit() # 读取视频的基本信息 frame_width = int(cap.get(3)) frame_height = int(cap.get(4)) fps = cap.get(cv2.CAP_PROP_FPS) # 定义视频编码器和创建VideoWriter对象 fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 根据文件名后缀使用合适的编码器 out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height)) # 初始化帧数计数器和起始时间 frame_count = 0 start_time = time.time() while True: ret, frame = cap.read() if not ret: print("Info: End of video file.") break # 对读入的帧进行对象检测 output_image = detect_object(frame, session, model_inputs, input_width, input_height) # 计算并打印帧速率 frame_count += 1 end_time = time.time() elapsed_time = end_time - start_time if elapsed_time > 0: fps = frame_count / elapsed_time print(f"FPS: {fps:.2f}") # 将处理后的帧写入输出视频 out.write(output_image) #(可选)实时显示处理后的视频帧 cv2.imshow("Output Video", output_image) if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放资源 cap.release() out.release() cv2.destroyAllWindows() else: print("输入错误,请检查mode的赋值") |
请根据您的需求调整置信度阈值、IOU阈值以及模型和mode的值(1为图片预测;2为摄像头检测; 3为视频检测)。
推理完成后,您可以查看处理后的图像,如下所示:
原始图片:
检测后的图片:
请替换为您自己的图像路径来查看效果;或者其他两种模式(摄像头实时检测、视频文件检测)进行尝试。
通过以上步骤,我们展示了如何使用YOLOv8进行目标检测的完整流程,从环境配置到代码实现和结果展示。此过程适用于YOLOv8目标检测任意模型进行检测任务。
希望这篇博客能够帮助您理解和实现基于YOLOv8的目标检测项目。如果有任何问题或需要进一步的帮助,请随时留言讨论。
首先通过图表比较不同排序算法的时间复杂度和稳定性。
排序方法 | 平均时间 | 最坏情况 | 最好情况 | 辅助空间 | 稳定性 |
直接插入排序 | O(n2) | O(n2) | O(n) | O(1) | 是 |
冒泡排序 | O(n2) | O(n2) | O(n) | O(1) | 是 |
简单选择排序 | O(n2) | O(n2) | O(n2) | O(1) | 是 |
希尔排序 | - | O(nlog2n)~O(n2) | O(nlog2n)~O(n2) | O(1) | 否 |
快速排序 | O(nlog2n) | O(n2) | O(nlog2n) | O(log2n) | 否 |
堆排序 | O(nlog2n) | O(nlog2n) | O(nlog2n) | O(1) | 否 |
2-路归并排序 | O(nlog2n) | O(nlog2n) | O(nlog2n) | O(n) | 是 |
基数排序 | O(d(n + rd)) | O(d(n + rd)) | O(d(n + rd)) | O(rd) | 是 |
注:1. 算法的时间复杂度一般情况下指最坏情况下的渐近时间复杂度。
2. 排序算法的稳定性会对多关键字排序产生影响。
下面通过C#代码说明不同的排序算法
插入排序
时间复杂度:平均情况—O(n2) 最坏情况—O(n2) 辅助空间:O(1) 稳定性:稳定
插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。当然,刚开始这个有序的小序列只有1个元素,就是第一个元素。比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。
希尔排序(shell)
时间复杂度:理想情况—O(nlog2n) 最坏情况—O(n2) 稳定性:不稳定
希尔排序是按照不同步长对元素进行插入排序,当刚开始元素很无序的时候,步长最大,所以插入排序的元素个数很少,速度很快;当元素基本有序了,步长很小,插入排序对于有序的序列效率很高。所以,希尔排序的时间复杂度会比o(n^2)好一些。由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。
冒泡排序
时间复杂度:平均情况—O(n2) 最坏情况—O(n2) 辅助空间:O(1) 稳定性:稳定
冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
快速排序
时间复杂度:平均情况—O(nlog2n) 最坏情况—O(n2) 辅助空间:O(log2n) 稳定性:不稳定
快速排序有两个方向,左边的i下标一直往右走,当a[i] <= a[center_index],其中center_index是中枢元素的数组下标,一般取为数组第0个元素。而右边的j下标一直往左走,当a[j] > a[center_index]。如果i和j都走不动了,i <= j, 交换a[i]和a[j],重复上面的过程,直到i>j。 交换a[j]和a[center_index],完成一趟快速排序。在中枢元素和a[j]交换的时候,很有可能把前面的元素的稳定性打乱,比如序列为 5 3 3 4 3 8 9 10 11, 现在中枢元素5和3(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱,所以快速排序是一个不稳定的排序算法,不稳定发生在中枢元素和a[j]交换的时刻。
选择排序
时间复杂度:平均情况—O(n2) 最坏情况—O(n2) 辅助空间:O(1) 稳定性:不稳定
选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。比较拗口,举个例子,序列5 8 5 2 9, 我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。
堆排序
时间复杂度:平均情况—O(nlog2n) 最坏情况—O(nlog2n) 辅助空间:O(1) 稳定性:不稳定
我们知道堆的结构是节点i的孩子为2*i和2*i+1节点,大顶堆要求父节点大于等于其2个子节点,小顶堆要求父节点小于等于其2个子节点。在一个长为n的序列,堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。但当为n/2-1, n/2-2, …1这些个父节点选择元素时,就会破坏稳定性。有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没有交换,那么这2个相同的元素之间的稳定性就被破坏了。所以,堆排序不是稳定的排序算法
归并排序
时间复杂度:平均情况—O(nlog2n) 最坏情况—O(nlog2n) 辅助空间:O(n) 稳定性:稳定
归并排序是把序列递归地分成短序列,递归出口是短序列只有1个元素(认为直接有序)或者2个序列(1次比较和交换),然后把各个有序的段序列合并成一个有序的长序列,不断合并直到原序列全部排好序。可以发现,在1个或2个元素时,1个元素不会交换,2个元素如果大小相等也没有人故意交换,这不会破坏稳定性。那么,在短的有序序列合并的过程中,稳定是是否受到破坏?没有,合并过程中我们可以保证如果两个当前元素相等时,我们把处在前面的序列的元素保存在结果序列的前面,这样就保证了稳定性。所以,归并排序也是稳定的排序算法。